Verdict Accuracy of Quick Reduct Algorithm for Gene Expression Data
نویسندگان
چکیده
Gene expression data are the number of training samples is very small compared to the large number of genes involved in the experiments, that gene selection results, the cost of biological experiment and decision can be greatly reduced by analyzing only the marker genes. Since dealing with high dimensional data is computationally complex and sometimes even intractable, recently several feature reductions methods have been developed to reduce the dimensionality of the data in order to simplify the calculation analysis in various applications such as text categorization, signal processing, image retrieval, gene expressions and etc. Among feature reduction techniques, feature selection is one the most popular methods due to the preservation of the original features.In this paper studies a feature selection method based on rough set theory. Further K-Means, Fuzzy C-Means (FCM) algorithm have implemented for the reduced feature set without considering class labels. Then they obtained results are compared with the original class labels. Back Propagation Network (BPN) has also been used for classification. Then the performance of K-Means, FCM, and BPN are analyzed through the confusion matrix. It is found that the BPN is performing well comparatively.
منابع مشابه
A New Hybrid K-Mean-Quick Reduct Algorithm for Gene Selection
Feature selection is a process to select features which are more informative. It is one of the important steps in knowledge discovery. The problem is that all genes are not important in gene expression data. Some of the genes may be redundant, and others may be irrelevant and noisy. Here a novel approach is proposed Hybrid K-Mean-Quick Reduct (KMQR) algorithm for gene selection from gene expres...
متن کاملVerdict Accuracy of Quick Reduct Algorithm using Clustering and Classification Techniques for Gene Expression Data
In most gene expression data, the number of training samples is very small compared to the large number of genes involved in the experiments. However, among the large amount of genes, only a small fraction is effective for performing a certain task. Furthermore, a small subset of genes is desirable in developing gene expression based diagnostic tools for delivering reliable and understandable r...
متن کاملA Novel Approach for Single Gene Selection Using Clustering and Dimensionality Reduction
We extend the standard rough set-based approach to deal with huge amounts of numeric attributes versus small amount of available objects. Here, a novel approach of clustering along with dimensionality reduction; Hybrid Fuzzy C Means-Quick Reduct (FCMQR) algorithm is proposed for single gene selection. Gene selection is a process to select genes which are more informative. It is one of the impor...
متن کاملSimultaneous Clustering and Feature Selection Method for Gene Expression Data
Microarrays are made it possible to simultaneously monitor the expression profiles of thousands of genes under various experimental conditions. It is used to identify the co-expressed genes in specific cells or tissues that are actively used to make proteins. This method is used to analysis the gene expression, an important task in bioinformatics research. Cluster analysis of gene expression da...
متن کاملA Novel Approach for Single Gene Selection Using Clustering and Dimensionality Reduction
We extend the standard rough set-based approach to deal with huge amounts of numeric attributes versus small amount of available objects. Here, a novel approach of clustering along with dimensionality reduction; Hybrid Fuzzy C Means-Quick Reduct (FCMQR) algorithm is proposed for single gene selection. Gene selection is a process to select genes which are more informative. It is one of the impor...
متن کامل